

Functionally Tailored Multi-Component Composite Structures via Additive Manufacturing

Craig A. Brice

Advanced Materials & Processing Branch Langley Research Center

NASA Aeronautics Research Mission Directorate (ARMD)

FY12 Seedling Phase I Technical Seminar

July 9-11, 2013

The Team

NASA Aeronautics Research Institute

Kenneth Cooper

Marshall Space Flight Center

Francisco Medina

University of Texas at El Paso

Joel Alexa Jim Baughman

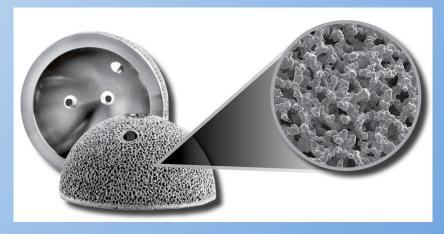
Peter Messick Ravi Shenoy

Harold Claytor

Advanced Materials & Processing Branch Langley Research Center

Eric Burke

Non-Destructive Evaluation Science Branch Langley Research Center

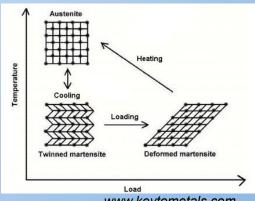

Introduction

NASA Aeronautics Research Institute

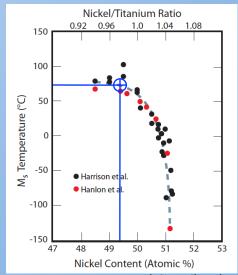
Metallic foam structures can be fabricated through a variety of processes

- Open cell (reticulated) foams can be fabricated through established foaming processes for some specific alloys (Al, Cu, Zn)
- Closed cell (syntactic) foams can be made via powder metallurgy approaches for other alloys systems (Ti, Ni, Fe)
- Additive manufacturing opens up new possibilities for the creation of novel foam structures (periodic and random) across a very wide range of alloys (all the above)
- This project will use additive manufacturing to create open cell "net structures" that can be infiltrated with another alloy to create a bi-metallic composite structure

www.ergaerospace.com



Introduction

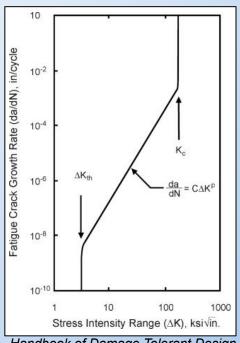

NASA Aeronautics Research Institute

The shape memory effect is well documented in certain materials and is currently being researched for a variety of applications

- The change in crystal structure from the high temperature phase (austenite) to the low temperature phase (martensite) is accommodated by twinning – the net volume change is zero
- Plastic deformation in the martensite is accommodated by "untwinning" the crystal
- Transformation back to austenite via heat treatment recovers the original crystal structure and original shape of the part
- This project will exploit this phenomenon in order to introduce an internal load on a composite material system thus creating a controlled residual stress field in the structure

www.keytometals.com

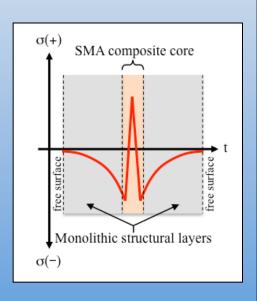
www.asminternational.org
SMST e-Elastic newsletter, January 2011



The Innovation

NASA Aeronautics Research Institute

Stress fields within a structure can have a very significant impact on properties and performance

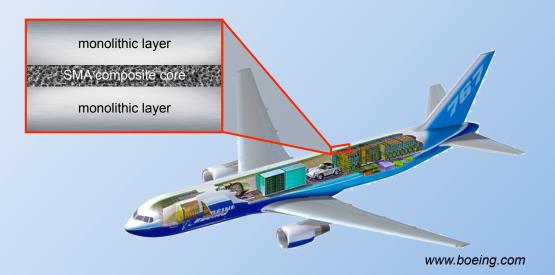

- Cracks tend to nucleate from a free surface and grow when stress levels exceed the threshold stress intensity factor (K_{th})
- Below the threshold level, a crack will not grow

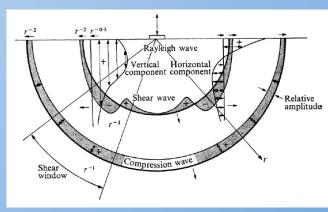
Handbook of Damage Tolerant Design

Objective:

Create a unique bi-metallic composite structure with a carefully designed residual stress field that can be tailored to limit or eliminate the ability of a surface crack to propagate through the structure

Impact


NASA Aeronautics Research Institute

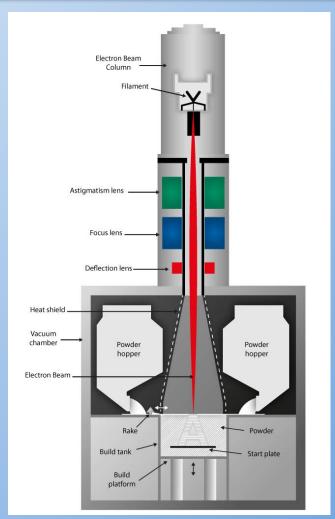

This concept could greatly impact the fatigue performance of structural aerospace components through crack closure and/or turning

Improves structural efficiency in damage tolerant-limited applications

Also has potential impact in anti-ballistic impact applications through shock wave disruption and/or attenuation

- MMOD shielding
- Armored tactical vehicles

K.F. Graff, "Wave Motion in Elastic Solids", 1975 Clarendon Press, Oxford



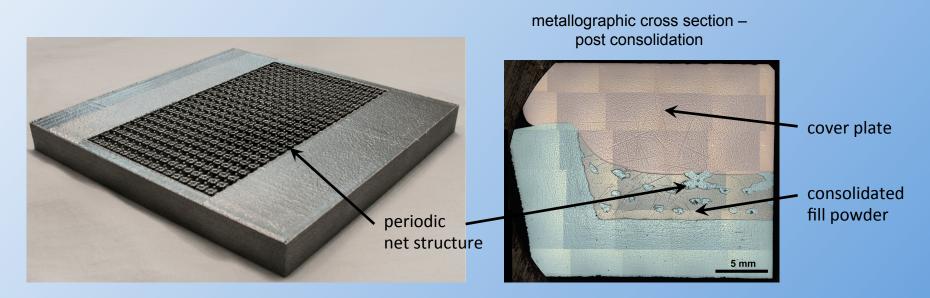
Technical Approach – Processing

NASA Aeronautics Research Institute

The Arcam electron beam powder bed additive manufacturing process was used to create the structures

- Fabrication done at W.M. Keck Center for 3D
 Innovation at the University of Texas at El Paso
- A thin layer of powder is spread over a substrate and an electron beam is used to melt and fuse the powders together
- The substrate platform increments downward and another thin layer of powder is spread over the previously fused layer
- The process is repeated until a three dimensional structure is created

www.arcam.com



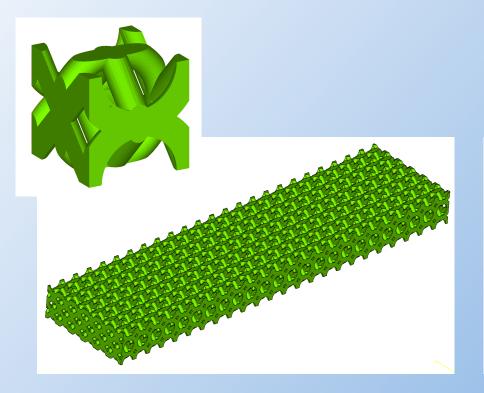
Technical Approach - Processing

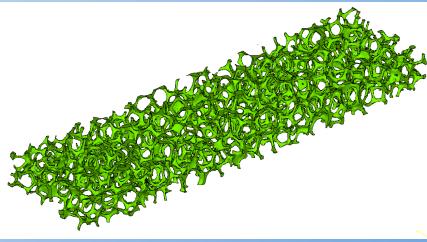
NASA Aeronautics Research Institute

Utilize additive manufacturing to create open cell net structures that can be infiltrated with a secondary alloy powder and hot consolidated into a fully-dense, multi-alloy structure

 Proof-of-concept with Ti-6Al-4V AM-fabricated structure infiltrated with commercially pure (CP) titanium and vacuum hot pressed to full density

Results - Design

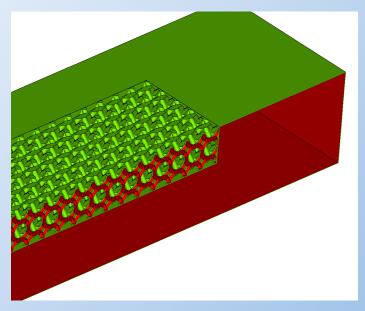

NASA Aeronautics Research Institute

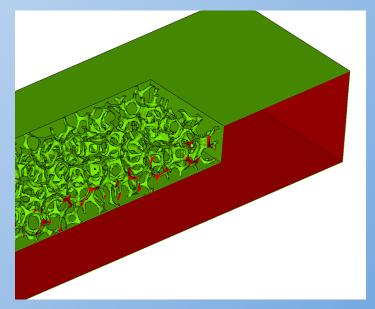

Periodic design

 Created unit cell using netfabb and SolidWorks software

Random design

 Reverse engineered via computed tomography (CT) from commerciallyavailable aluminum foam




Results - Design

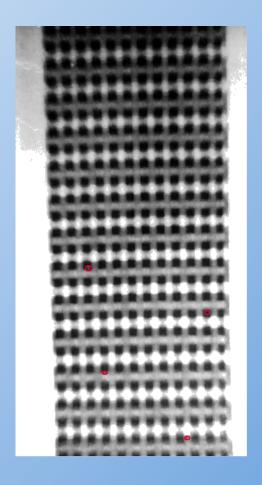
NASA Aeronautics Research Institute

Results - Processing

NASA Aeronautics Research Institute

Processing route:

- NiTi powder vibrated into net structure voids
 - 50.7 at% Ti 49.3 at% Ni; -140 mesh (-105 μm)
 - $A_s = 68^{\circ}C \mid A_f = 109^{\circ}C \mid M_s = 78^{\circ}C \mid M_f = 38^{\circ}C$
- A cover plate is added and the entire structure is vacuum hot pressed
 - 940°C for 4 hours at 1,000 psi
- The sample is trimmed to consistent dimensions using waterjet cutting
- Perform shape set heat treatment
 - 500°C for 15 minutes
- Cold roll to ≈ 5% reduction in thickness
- Perform memory activation heat treatment
 - 115°C for 15 minutes
 - Control sample evaluated in as-rolled condition

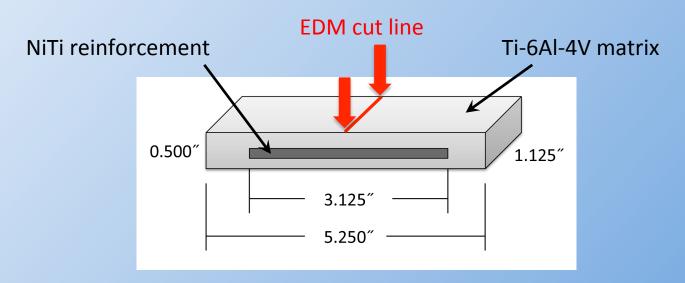


Results - Processing

NASA Aeronautics Research Institute

Radiography of the vacuum hot pressed sample performed by Non-Destructive Evaluation Sciences Branch

- No major voids indicating complete fill of the NiTi powder in the net structure
- Incidental porosity indicated by the red circles in the image
- Three-dimensional CT scan will be performed once samples are ready for residual stress testing



Results – Properties

NASA Aeronautics Research Institute

Two dimensional residual stress profile is measured with the cut compliance method

- Wire electric discharge machining used to make an incremental cut through the thickness of the test coupon
- Strain gages placed adjacent and opposite the cut line measure surface strain as a function of cut depth
- Residual stress is calculated based on stress relaxation due to the cut

Results – Properties

NASA Aeronautics Research Institute

Testing status

- Samples have been successfully hot consolidated
- Machining underway to trim down to appropriate size and adequately prepare the surfaces
- Shape set heat treatment + cold rolling + memory activation heat treatment will follow
- PR issued to Hill Engineering, LLC, Rancho Cordova, California for cut compliance testing

Dissemination

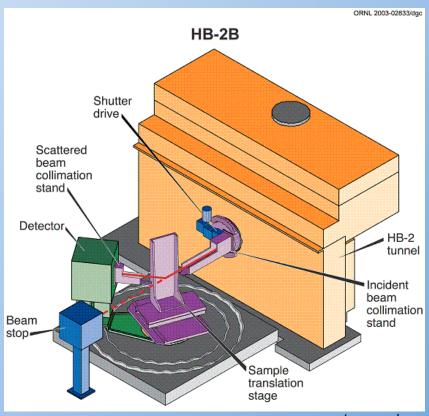
NASA Aeronautics Research Institute

Internal

- This technical seminar
- Programmatic contacts at LaRC and at HQ
- Partnership in place from the beginning with MSFC as a mechanism to transfer the manufacturing know-how beyond LaRC

External

- Appropriate conference and/or journal publication(s)
- Contacts at major aerospace prime contractors Boeing Research & Technology,
 Lockheed Martin Skunk Works
- Supporters at Army Research and Development Command at Picatinny Arsenal for armor applications



Next Steps

NASA Aeronautics Research Institute

Neutron diffraction will be used to experimentally determine bulk three-dimensional residual stresses throughout the specimen

- Three days of beam time competitively awarded at Oak Ridge National Laboratory on High Flux Isotope Reactor, beam line HB-2B (Residual Stress Mapping Facility)
- Experiment scheduled for late August

www.neutrons.ornl.gov

Questions

NASA Aeronautics Research Institute

Craig A. Brice craig.a.brice@nasa.gov 757-864-7792